Postprandial Hyperlipidemia and Atherosclerosis

Akira Tanaka

Department of Health and Nutrition, College of Human and Environmental Studies, Kanto-gakuin University, Kanagawa, Japan.

The development of the remnant like particle (RLP) method for conveniently measuring serum remnant lipoprotein levels in 1993 promoted much research on atherogenic significance and metabolism of remnant lipoproteins. This research brought about many results as the following. A novel apolipoprotein B48 receptor incorporating remnant lipoproteins into macrophages in arterial wall was discovered and the structure of the gene of the receptor was clarified. The expression of apolipoprotein B100 was recognized in the human small intestine, suggesting that dietary very low density lipoproteins (VLDL) might be synthesized in the human small intestine and converted into VLDL remnants and low density lipoproteins (LDL). It is recognized that the atherosclerotic risk of postprandial hyperlipidemia is derived from an increase of remnant lipoproteins and that measurement of serum RLP levels in postprandial state is more sensitive and necessary for evaluating an atherosclerotic risk because serum RLP levels remain high all day in patients with diabetes mellitus or coronary heart disease. The relation between postprandial hyperlipidemia and insulin resistance was clarified. J Atheroscler Thromb, 2004; 11: 322–329.

Key words: Postprandial hyperlipidemia, Remnant lipoprotein, RLP, Atherosclerosis

Introduction

Since the report of Zilversmit (1) in 1979, postprandial hyperlipidemia has been noticed as a risk factor for atherosclerosis. We have focused on an increase of triglyceride (TG) rich lipoproteins, especially remnant lipoproteins, as a cause of atherosclerotic risk of postprandial hyperlipidemia and researched on the atherogenic significance and metabolism of remnant lipoproteins.

Remnant Lipoproteins and Remnant Like Particles (RLP)

There are two types of remnant lipoproteins, one is chylomicron remnant which is derived from chylomicron synthesized in small intestine, and the other is very low density lipoprotein (VLDL) remnant which is derived from VLDL synthesized in liver. Because of rapid metabolism of remnant lipoproteins, fasting serum of healthy subjects does not include remnant lipoproteins (Fig. 1).

An increase of remnant lipoproteins is a risk factor for atherosclerosis (2). The remnant lipoprotein is as well as the oxidized low density lipoprotein (LDL), easily taken into the macrophage in the arterial wall, promoting foam cell formation of macrophages and forming the atherosclerotic lesion (Fig. 2). However, the remnant lipoprotein was not clinically familiar, since there was no method for conveniently measuring the remnant lipoprotein. In 1993, we developed the remnant like particle (RLP) method for measuring serum remnant lipoproteins in clinical samples (3–5). As a result, clinical research revealed that RLP was easily taken into macrophages in arterial wall as well as oxidized LDL (6), promoted platelet aggregation (7), increased PAI-1 activity (8), impaired endothelial function (9), promoted proliferation of vascular smooth muscle cells (10, 11), and promoted adhesion of monocytes to endothelial cells (12), showing atherogenic
mechanism of RLP. Recently we clarified that the HMG CoA reductase inhibitor (statin) inhibited adhesion of monocytes to endothelial cells (12).

There are also many clinical reports showing that an increase of RLP is a risk factor for atherosclerosis (13–14). The Framingham Heart Study reported that an increase of RLP cholesterol (RLP-C) is a significant risk factor for coronary artery disease in women (15). And Kugiyama et al. (16) reported that the incidence of cardiovascular events in the high RLP-C group (RLP-C ≥ 5.1 mg/dl) was higher than that in the low RLP-C group (RLP-C ≤ 3.3 mg/dl) in a 3-year following clinical study. As the result, Food and Drug Administration (FDA) of the USA recognized that an increase of RLP was a risk factor for coronary heart disease in 2000.

Significance of Postprandial Hyperlipidemia

Study in healthy subjects

Figure 3 shows the results of the fat load test in 19 healthy Subjects (17). Levels of total cholesterol (TC) and high density lipoprotein cholesterol (HDL-C) do not

Fig. 1. Metabolism of remnant lipoproteins.

Fig. 2. Incorporation of remnant lipoproteins and oxidized LDL into macrophages in arterial wall.

Fig. 3. Changes of lipid levels before and after OFTT cream load.

* p < 0.05, ** p < 0.01, *** p < 0.001 vs values before OFTT cream load
change before and after fat load. However, levels of triglyceride (TG), RLP-C and RLP triglyceride (RLP-TG) increase after fat load, which shows that TG, RLP-C and RLP-TG are useful as the index of postprandial hyperlipidemia. Hypertriglyceridemia derives from an increase of chylomicron, VLDL or remnant lipoprotein. However, remnant lipoprotein is the most important of the three lipoproteins as the risk factor for atherosclerosis. Therefore, RLP is the most important as the index of fat load test or postprandial hyperlipidemia.

Study in patients with coronary artery disease

Figure 4 shows changes of RLP-C levels of healthy subjects and patients with coronary artery disease (CAD) in the fat load test. In healthy subjects, RLP-C levels slightly increase under the cut-off level. However, in patients with CAD, RLP-C levels increase obviously after fat load. And there are many patients with CAD whose RLP-C levels are below the cut-off level before fat load and over the cut-off level after fat load. In such cases, measurement of RLP-C is necessary not only before but also after fat load. Measurement of RLP-C in postprandial state is more sensitive and important for estimating the atherosclerotic risk.

Study in patients with diabetes mellitus

Figure 5 shows daily profile of RLP-C levels in 21 healthy subjects and 28 patients with type 2 diabetes mellitus. RLP-C levels before and 2 hours after breakfast, lunch and dinner, and 23 pm are measured. In healthy subjects, there are small fluctuations of RLP-C levels and short hours in which RLP-C levels exceed the cut-off value. In patients with diabetes mellitus, RLP-C levels keep high values all the day except a few hours before breakfast. This result shows that measurement of RLP-C levels only in fasting state is insufficient in sensitivity and measurement of RLP-C levels in postprandial state is necessary for evaluating the coronary risk in patients with diabetes mellitus.

Generally, people frequently take snacks between meals; thus they may be in a postprandial state most of
the day. Figure 3 shows that the RLP values 8 hours after fat load do not return to the RLP values before fat load. This result suggests that the fasting state seems to be only a few hours before breakfast in the day, showing that measurement of RLP is necessary for sensitive evaluation of the coronary risk.

Evaluation of postprandial hyperlipidemia

Fat loading test is useful for evaluation of postprandial hyperlipidemia. However, each researcher uses different type and amount of fat in the fat loading test. Therefore, each result can not be compared. The unification of type and amount of fat is necessary for establishment of the evaluation method for postprandial hyperlipidemia. We are using the OFTT cream (Table 1) developed for the fat load test and obtaining fundamental data of the fat load test using this cream for establishment of the evaluation method for postprandial hyperlipidemia.

The OFTT cream was used in the fat load test of 19 healthy subjects shown in Fig. 3. Results indicated that the more the amount of OFTT cream was, the latter the peak time of RLP values was and the higher the peak value of RLP was (17). The peak of RLP value appeared 4 hours after the load of fat 30 g/body surface (m²) and 2 hours after the load of fat 17 g/body surface (m²). Gastrointestinal side effects occurred in the test using much amount of fat. The side effects did not occur in the test using fat under 17 g/ body surface (m²).

Apolipoprotein B48 and retinyl palmitate besides RLP may be considered as an index for evaluating postprandial hyperlipidemia. However, the method for measuring apolipoprotein B48 values has not been established yet and the reports regarding apolipoprotein B48 are few. And we found that the peak of retinyl palmitate concentration lagged behind the peaks of the RLP and TG concentrations in the study shown in Fig. 3 (17), indicating that retinyl palmitate may have different kinetics to RLP and TG. Accordingly, the retinyl palmitate level may not be a suitable index for evaluating postprandial hyperlipidemia.

Table 1. Composition of OFTT cream.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>56.9%</td>
</tr>
<tr>
<td>Lipid</td>
<td>32.9%</td>
</tr>
<tr>
<td>Protein</td>
<td>2.5%</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>7.4%</td>
</tr>
</tbody>
</table>

Composition of fatty acid

<table>
<thead>
<tr>
<th>Type of Fatty Acid</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated fatty acid</td>
<td>64.3%</td>
</tr>
<tr>
<td>Mono unsaturated fatty acid</td>
<td>29.3%</td>
</tr>
<tr>
<td>Poly unsaturated fatty acid</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

(Weight %)

Coronary artery disease and postprandial hyperlipidemia

The OFTT cream load test was used in patients with coronary artery disease. We compared RLP-C and RLP-TG values before and after OFTT cream load (fat 30 g/m² body surface) between 33 patients with coronary artery disease and 24 normal subjects diagnosed by coronary angiography matching age, body mass index (BMI) and fasting values of TC, TG, HDL-C, RLP-C, RLP-TG and LDL-C in both. There were not significant differences in fasting values of RLP-C and RLP-TG between the two groups. However, RLP-C and RLP-TG values 2 and 4 hours after OFTT cream load were higher in patients with coronary artery disease than those in normal subjects (Fig. 6). This result suggests that the increase of RLP values in postprandial state is one of coronary risk factors. The results agreed with the report by Ikewaki (18).
Insulin resistance and postprandial hyperlipidemia

We showed the increase of RLP-C and RLP-TG values of diabetic patients with insulin resistance in a postprandial state by using the OFTT cream load test (19). Of 66 newly diagnosed type 2 diabetic patients by 75 g glucose tolerance test, 15 diabetic patients with 120 min insulin value over 80 µU/ml and ΣRI value (sum of 0, 30, 60, 90, 120, and 180 min insulin values) over 300 µU/ml were diagnosed as diabetes mellitus with insulin resistance, and 15 diabetic patients with 120 min insulin value under 60 µU/ml and ΣRI value under 250 µU/ml were diagnosed as diabetes mellitus without insulin resistance. Age, sex, and BMI between both groups were matched. The fat load test in both the diabetic groups and healthy group was undergone within 30 days after 75 g glucose tolerance test. Fat 17 g/m² body surface using the OFTT cream was loaded and values of RLP-C, RLP-TG and other lipids were measured before, and 2 and 4 hours after fat load. Though TC, HDL-C, glucose and insulin values did not change after fat load, TG, RLP-C and RLP-TG values obviously increased after fat load (Fig. 7). TG, RLP values peaked at 4 hours after fat load in both the diabetic groups, but peaked at 2 hours and decreased at 4 hours after fat load in the healthy group. And the sum of the amount of increase of 2 and 4 hour values was significantly higher in the diabetes group with insulin resistance than that in the diabetic group without insulin resistance. Reaven GM (20) showed an increase of postprandial RLP-C values even in healthy subjects with insulin resistance.

In diabetic patients with insulin resistance and patients with coronary artery disease, an increase of postprandial RLP values occurs and becomes a coronary risk factor.

Production of Remnant Lipoproteins

There are two kinds of remnant lipoproteins, one is chylomicron remnant converted from chylomicron, the other is VLDL remnant converted from VLDL. Chylomicron is synthesized in the small intestine and VLDL is synthesized in the liver. In humans, apolipoprotein B100 is synthesized in the liver and is a principal component of VLDL, VLDL remnant and LDL, by which endogenously synthesized lipid is transported. Apolipoprotein B48 is synthesized in the small intestine and is a principal component of chylomicron and chylomicron remnant, by which dietary lipid is transported. We performed immunohistochemical staining using anti-apolipoprotein B100 monoclonal antibody, which reacts only with apolipoprotein B100 (21). Jejunal samples stained positive and granular staining was noted in the supranuclear region of epithelial cells. However, samples of esophagus, stomach and colon stained negative. We also identified apolipoprotein B100 expression in the epithelial cells of jejunum by immunoblotting and dot blotting of RCR-amplified cDNA (22). The results indicate that not only apolipoprotein B48, but also apolipoprotein B100 are expressed in the human small intestine. The expression of apolipoprotein B100 suggests that dietary VLDL may be synthesized in the human small intestine and converted into LDL, which might play an important role in atherosclerosis (Fig. 8).

Atherosclerosis Developing Mechanism of TG Rich Lipoproteins

It is reported that TG rich lipoproteins including remnant lipoproteins are easily taken into macrophages in the arterial wall and develops foam cell formation of mac-

Fig. 7. Changes of triglyceride, RLP triglyceride and RLP cholesterol levels before and after OFTT cream load in type 2 diabetic patients with or without hyperinsulinemia and healthy controls.
Postprandial Hyperlipidemia

The distribution of the apolipoprotein B48 receptor suggests that the role of the receptor is to provide dietary lipids and vitamins for monocytes in circulation, reticuloendothelial system, placenta and bone marrow. However, in the states in which TG rich lipoproteins such as remnant lipoproteins increase, the apolipoprotein B48 receptor takes TG rich lipoproteins into macrophages and develops foam cell formation of macrophages and makes the early atherosclerotic lesion. We performed immunohistochemical staining using the anti-apolipoprotein B48 receptor antibody and recognized positive staining in the atherosclerotic lesions of cervical artery, aorta and coronary artery where macrophages existed (23).

Treatment for Increase of Remnant Lipoproteins

An increase of remnant lipoproteins is a risk factor for atherosclerosis. Diet, exercise and drugs are very useful for the increase of remnant lipoproteins. Fibrates are the first choice for the increase of remnant lipoproteins and decrease RLP-C and RLP-TG values by over 50% (25). Recently we recognized that fibrates and thiazolidinediones such as troglitazone and pioglitazone inhibited the expression of mRNA and protein of the apolipoprotein B48 receptor (26). This result indicates that incorporation of TG rich lipoproteins including remnant lipoproteins into macrophages is inhibited by these drugs, which shows suppression of atherosclerosis. Incorporation of TG rich lipoproteins into macrophages (THP-1 cells) is actually recognized.

An increase of remnant lipoproteins is easy to treat. Therefore, it is very important to diagnose it early and treat it completely.

References

